
UNIT-4

Syllabus:
File Operations: Understanding read functions, read (), readline () and readlines (), Understanding write

functions, write () and writelines (), Manipulating file pointer using seek, Programming using file

operations, Reading config files in python, Writing log files in python.

Object Oriented Programming: Concept of class, object and instances, Constructor, class attributes and

destructors, Real time use of class in live projects, Inheritance, overlapping and overloading operators,

Adding and retrieving dynamic attributes of classes, Programming using Oops support.

Design with Classes: Objects and Classes, Data modelling Examples, Case Study An ATM, Structuring

Classes with Inheritance and Polymorphism.

Files in Python:

Until now, you have been reading and writing to the standard input and output. Now, we

will see how to use actual data files. Python provides us with an important feature for reading

data from the file and writing data into a file. Mostly, in programming languages, all the values

or data are stored in some variables which are volatile in nature. Because data will be stored into

those variables during run-time only and will be lost once the program execution is completed.

Hence it is better to save these data permanently using files. Python provides basic functions

and methods necessary to manipulate files by default. You can do most of the file manipulation

using a file object.

Opening and Closing Files

The open () Method

Before you can read or write a file, you have to open it using Python's built-in open ()

function. This function creates a file object, which would be utilized to call other support

methods associated with it.

Syntax: file object = open (filename, access mode)

Here are parameter details –

file_name − The file_name argument is a string value that contains the name of the file that you

want to access.

www.Jntufastupdates.com 1

access_mode − The access_mode determines the mode in which the file has to be opened, i.e.,

read, write, append, etc. A complete list of possible values is given below in the table. This is

optional parameter and the default file access mode is read (r).

Here is a list of the different modes of opening a file –

Sno Modes & Description

1 r

Opens a file for reading only. The file pointer is placed at the beginning of the file.

This is the default mode.

2 rb

Opens a file for reading only in binary format. The file pointer is placed at the

beginning of the file. This is the default mode.

3 r+

Opens a file for both reading and writing. The file pointer placed at the beginning of

the file.

4 rb+

Opens a file for both reading and writing in binary format. The file pointer placed at

the beginning of the file.

5 w

Opens a file for writing only. Overwrites the file if the file exists. If the file does not

exist, creates a new file for writing.

www.Jntufastupdates.com 2

6 wb

Opens a file for writing only in binary format. Overwrites the file if the file exists.

If the file does not exist, creates a new file for writing.

7 w+

Opens a file for both writing and reading. Overwrites the existing file if the file

exists. If the file does not exist, creates a new file for reading and writing.

8 wb+

Opens a file for both writing and reading in binary format. Overwrites the existing

file if the file exists. If the file does not exist, creates a new file for reading and

writing.

9 a

Opens a file for appending. The file pointer is at the end of the file if the file exists.

That is, the file is in the append mode. If the file does not exist, it creates a new file

for writing.

10 ab

Opens a file for appending in binary format. The file pointer is at the end of the file

if the file exists. That is, the file is in the append mode. If the file does not exist, it

creates a new file for writing.

11 a+

Opens a file for both appending and reading. The file pointer is at the end of the

file if the file exists. The file opens in the append mode. If the file does not exist,

it creates a new file for reading and writing.

12 ab+

Opens a file for both appending and reading in binary format. The file pointer is at

the end of the file if the file exists. The file opens in the append mode. If the file

does not exist, it creates a new file for reading and writing.

www.Jntufastupdates.com 3

The file Object Attributes:

Once a file is opened and you have one file object, you can get various information

related to that file.

Here is a list of all attributes related to file object −

Example:

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#File object attributes

print('Name of the file: ', f.name)

print('Closed or not : ', f.closed)

print('Opening mode : ', f.mode)

f.close()

The close () Method

The close () method of a file object flushes any unwritten information and closes the

file object, after which no more writing can be done. It is a good practice to use the close ()

method to close a file.

Syntax: fileObject.close()

Sno Attribute & Description

1 file.closed

Returns true if file is closed, false otherwise.

2 file.mode

Returns access mode with which file was opened.

3 file.name

Returns name of the file.

www.Jntufastupdates.com 4

Example:

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#File object attributes

print('Name of the file: ', f.name)

print('Closed or not : ', f.closed)

print('Opening mode : ', f.mode)

f.close()

Reading and Writing Files

The file object provides a set of access methods. Now, we will see how to use read (), readline

(), readlines () and write (), writelines () methods to read and write files.

Understanding write () and writelines ()

The write () Method

• The write () method writes any string (binary data and text data) to an open file.

• The write () method does not add a newline character ('\n') to the end of the string

Syntax: fileObject.write(string)

Here, passed parameter is the content to be written into the opened file.

Example:

f=open('sample.txt','w') #creates a new file sample.txt give write permissions on file

#writing content into file sample.txt using write method

f.write("Python is a great language.")

f.close()

www.Jntufastupdates.com 5

The writelines () method:

Python file method writelines () writes a sequence of strings to the file. The sequence

can be any iterable object producing strings, typically a list of strings. There is no return value

.

Syntax: fileObject.writelines(sequence)

Parameters

Sequence − This is the Sequence of the strings.

Return Value-This method does not return any value.

Example

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#writing content into file using write method

f.writelines (['python is easy\n','python is portable\n','python is comfortable']

)

 f.close()

Understanding read (), readline () and readlines ():

The read () Method

The read () method reads a string from an open file. It is important to note that Python strings

can have binary data. apart from text data.

Syntax: fileObject.read([count])

Here, passed parameter is the number of bytes to be read from the opened file. This method

starts reading from the beginning of the file and if count is missing, then it tries to read as

much as possible, maybe until the end of file.

www.Jntufastupdates.com 6

Example

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#writing content into file using write method

f.writelines(['python is easy\n','python is portable\n','python is comfortable'])

 f.close()

f=open('sample.txt','r')

#reading first 20 bytes from the file using read() method

print(f.read(20))

The readline () Method

Python file method readline()reads one entire line from the file. A trailing newline character

is kept in the string. If the size argument is present and non-negative, it is a maximum byte

count including the trailing newline and an incomplete line may be returned.

An empty string is returned only when EOF is encountered immediately.

Syntax: fileObject.readline(size)

Parameters

• size − This is the number of bytes to be read from the file.

Return Value

• This method returns the line read from the file.

Example

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#writing content into file using write method

f.writelines(['python is easy\n','python is portable\n','python is comfortable'])

f.close()

www.Jntufastupdates.com 7

f=open('sample.txt','r')

#reading first line of the file using readline() method

print(f.readline())

The readlines () Method

Python file method readlines() reads until EOF using readline() and returns a list

containing the lines. If the optional sizehint argument is present, instead of reading up to EOF,

whole lines totalling approximately sizehint bytes (possibly after rounding up to an internal

buffer size) are read.

An empty string is returned only when EOF is encountered immediately.

Syntax: fileObject.readlines(sizehint)

Parameters

• sizehint − This is the number of bytes to be read from the file.

Return Value

This method returns a list containing the lines.

Example

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#writing content into file using write method

f.writelines(['python is easy\n','python is portable\n','python is comfortable'])

 f.close()

f=open('sample.txt','r')

#reading all the line of the file using readlines() method

print(f.readlines())

Manipulating file pointer using seek():

tell (): The tell () method tells you the current position within the file

www.Jntufastupdates.com 8

Syntax: file_object.tell()

Example:

Open a file

fo = open("sample.txt", "r+")

str = fo.read(10)

print("Read String is : ", str)

Check current position

position = fo.tell()

print("Current file position : ", position)

fo.close()

seek (): The seek (offset, from_what) method changes the current file position.

Syntax: f.seek(offset, from_what) #where f is file pointer

Parameters:

Offset: Number of postions to move forward

from_what: It defines point of reference.

Returns: Does not return any value

The reference point is selected by the from_what argument. It accepts three values:

0: sets the reference point at the beginning of the file

 1: sets the reference point at the current file position

 2: sets the reference point at the end of the file

By default from_what argument is set to 0.

Note: Reference point at current position / end of file cannot be set in text mode except

when offset is equal to 0.

Example:

Open a file

www.Jntufastupdates.com 9

fo = open("sample.txt", "r+")

str = fo.read(10)

print("Read String is : ", str)

Check current position

position = fo.tell()

print("Current file position : ", position)

Reposition pointer at the beginning once again

position = fo.seek(0, 0);

str = fo.read(10)

print("Again read String is : ", str)

Close opend file

fo.close()

File processing operations:

Python os module provides methods that help you perform file-processing operations,

such as renaming and deleting files.

To use this module you need to import it first and then you can call any related functions.

i) os.rename(): The rename() method takes two arguments, the current filename and the new

filename.(to rename file)

Syntax: os.rename(current_file_name, new_file_name)

Example:

import os

os.rename(‘sample.txt’,’same.txt’)

ii) os.mkdir(): The mkdir() method takes one argument as directory name, that you want to

www.Jntufastupdates.com 10

create.(This method is used to create directory)

Syntax: os.mkdir(directory name)

Example:

import os

os.mkdir(‘python’) # Creates python named directory

iii) os.rmdir(): The rmdir() method takes one argument as directory name, that you want to

remove.(This method is used to remove directory)

Syntax: os.rmdir(directory name)

Example:

import os

os.rmdir(‘python’) # removes python named directory

iv) os.chdir(): The chdir() method takes one argument as directory name which we want to

change.(This method is used to change directory)

Syntax: os.chdir(newdir)

Example:

import os

os.chdir(‘D:\>’) # change directory to D drive

os.remove(): The remove() method takes one argument, the filename that you want to

remove.(This method is used to remove file)

Syntax: os.remove(filename)

Example:

import os

os.remove(‘python,txt’) # removes python.txt named file

os.getcwd(): The getcwd() method takes zero arguments,it gives current working director.

Syntax: os.getcwd()

www.Jntufastupdates.com 11

Example:

import os

os.getcwd() # it gives current working directory

WRITING AND READING CONFIG FILES IN PYTHON

Config files help creating the initial settings for any project, they help avoiding the

hardcoded data. For example, imagine if you migrate your server to a new host and suddenly

your application stops working, now you have to go through your code and search/replace IP

address of host at all the places. Config file comes to the rescue in such situation. You define

the IP address key in config file and use it throughout your code. Later when you want to change

any attribute, just change it in the config file. So this is the use of config file.

Creating and writing config file in Python

In Python we have configparser module which can help us with creation of config files (.ini
format).

Program:

from configparser import ConfigParser

#Get the configparser object

config_object = ConfigParser()

#Assume we need 2 sections in the config file, let's call them USERINFO and
SERVERCONFIG

config_object["USERINFO"] = {

 "admin": "Chankey Pathak",

 "loginid": "chankeypathak",

 "password": "tutswiki"

}

config_object["SERVERCONFIG"] = {

www.Jntufastupdates.com 12

 "host": "tutswiki.com",

 "port": "8080",

 "ipaddr": "8.8.8.8"

}

#Write the above sections to config.ini file

with open('config.ini', 'w') as conf:

 config_object.write(conf)

Now if you check the working directory, you will notice config.ini file has been created, below

is its content.

[USERINFO]

admin = Chankey Pathak

password = tutswiki

loginid = chankeypathak

[SERVERCONFIG]

host = tutswiki.com

ipaddr = 8.8.8.8

port = 8080

Reading a key from config file:

So we have created a config file, now in your code you have to read the configuration

data so that you can use it by “keyname” to avoid hardcoded data, let’s see how to do that

Program:

from configparser import ConfigParser

www.Jntufastupdates.com 13

#Read config.ini file

config_object = ConfigParser()

config_object.read("config.ini")

#Get the password

userinfo = config_object["USERINFO"]

print("Password is{}".format(userinfo["password"]))

output:

Password is tutswiki

www.Jntufastupdates.com 14

UNIT-4

PART-2

Object Oriented Programming: Concept of class, object and instances, Constructor, class

attributes and destructors, Real time use of class in live projects, Inheritance, overlapping and

overloading operators, Adding and retrieving dynamic attributes of classes, Programming using

Oops support

Design with Classes: Objects and Classes, Data modelling Examples, Case Study An ATM,

Structuring Classes with Inheritance and Polymorphism

Introduction

We have two programming techniques namely

1. Procedural-oriented programming technique

2. Object-oriented programming technique

Till now we have using the Procedural-oriented programming technique, in which our

program is written using functions and block of statements which manipulate data. However a

better style of programming is Object-oriented programming technique in which data and

functions are combined to form a class. Object Oriented programming (OOP) is a programming

paradigm that relies on the concept of classes and objects. It is used to structure a software

program into simple, reusable pieces of code blueprints (usually called classes), which are used

to create individual instances of objects. There are many object-oriented programming

languages including JavaScript, C++, Java, and Python.

Classes and objects are the main aspects of object oriented programming.

Overview of OOP Terminology

• Class − A user-defined prototype for an object that defines a set of attributes that

characterize any object of the class. The attributes are data members (class variables

and instance variables) and methods, accessed via dot notation.

• Class variable − A variable that is shared by all instances of a class. Class variables are

defined within a class but outside any of the class's methods. Class variables are not

used as frequently as instance variables are.

• Data member − A class variable or instance variable that holds data associated with a

class and its objects.

• Function overloading − The assignment of more than one behavior to a particular

function. The operation performed varies by the types of objects or arguments

involved.

• Instance variable − A variable that is defined inside a method and belongs only to the

www.Jntufastupdates.com 15

current instance of a class.

• Inheritance − The transfer of the characteristics of a class to other classes that are

derived from it.

• Instance − An individual object of a certain class. An object obj that belongs to a class

Circle, for example, is an instance of the class Circle.

• Instantiation − The creation of an instance of a class.

• Method − A special kind of function that is defined in a class definition.

• Object − A unique instance of a data structure that's defined by its class. An object

comprises both data members (class variables and instance variables) and methods.

• Operator overloading − The assignment of more than one function to a particular

operator.

Benefits of OOP

• OOP models complex things as reproducible, simple structures

• Reusable, OOP objects can be used across programs

• Allows for class-specific behavior through polymorphism

• Easier to debug, classes often contain all applicable information to them

• Secure, protects information through encapsulation

Classes:

1. Class is a basic building block in python

2. Class is a blue print or template of a object

3. A class creates a new data type

4. And object is instance(variable) of the class

5. In python everything is an object or instance of some class

Example :

All integer variables that we define in our program are instances of class int. >>>

a=10

>>> type(a)

<class 'int'>

6. The python standard library based on the concept of classes and objects

www.Jntufastupdates.com 16

Defining a class:

Python has a very simple syntax of defining a class.

Syntax :

Class class-name:

Statement1

Statement2

Statement3

-

-

-

Statement

From the syntax, Class definition starts with the keyword class followed by class-name

and a colon(:). The statements inside a class are any of these following

1. Sequential instructions

2. Variable definitions

3. Decision control statements

4. Loop statements

5. Function definitions

Note : the class members are accessed through class object

Note : class methods have access to all data contained in the instance of the object

Creating objects: (creating an object of a class is known as class

instantiation)

• Once a class is defined, the next job is to create a object of that class. • The

object can then access class variables and class methods using dot operator

Syntax of object creation:

Object-name=class-name()

• Syntax for accessing class members through the class object is

 Object-name.class-member-name

Example :

class ABC:

a=10

obj=ABC()

print(obj.a)

self variable and class methods:

www.Jntufastupdates.com 17

• Self refers to the object itself (Self is a pointer to the class instance)

• Whenever we define a member function in a class always use a self as a first argument

and give rest of the arguments

• Even if it doesn’t take any parameter or argument you must pass self to a member

function

• We do not give a value for this parameter, when call the method, python will provide it.

• The self in python is equivalent to the this pointer in c++

Example 1 :

class Person:

 pc=0 # Class varibles

 def setFullName(self,fName,lName):

 self.fName=fName # instance variables

 self.lName=lName # instance variables

 def printFullName(self):

 print(self.fName," ",self.lName)

 print("Person number : ",self.pc) #access Classvariable

PName=Person() #Object PName created

PName.setFullName("vamsi","kurama")

PName.pc=7 #Attribute pc of PName modified

PName.printFullName()

P=Person() #Object P created

P.setFullName("Surya","Vinti")

P.pc=23 #Attribute pc of P modified

P.printFullName()

Output:

>>>

vamsi kurama

Person number : 7

Surya Vinti

Person number : 23

www.Jntufastupdates.com 18

Constructor method:

 A constructor is a special type of method (function) that is called when it instantiates an object

of a class. The constructors are normally used to initialize (assign values) to the instance

variables.

Creating a constructor: (The name of the constructor is always the _ _init_ _().)

The constructor is always written as a function called __init__(). It must always take as its

first argument a reference to the instance being constructed.

While creating an object, a constructor can accept arguments if necessary. When you create a

class without a constructor, Python automatically creates a default constructor that doesn't do

anything.

Every class must have a constructor, even if it simply relies on the default

constructor. Example:

class Person:

 pc=0 # Class varibles

 def __init__(self):

 print("Constructor initialised ")

 self.fName="XXXX"

 self.lName="YYYY"

 def setFullName(self,fName,lName):

 self.fName=fName # instance variables

 self.lName=lName # instance variables

 def printFullName(self):

 print(self.fName," ",self.lName)

 print("Person number : ",self.pc) #access Classvariable

PName=Person()

PName.printFullName()

PName.setFullName("vamsi","kurama")

PName.pc=7

print("After setting Name:")

PName.printFullName()

www.Jntufastupdates.com 19

Output:

>>>

Constructor initialised

XXXX YYYY

Person number : 0

After setting Name:

vamsi kurama

Person number : 7

Destructor:

Destructors are called when an object gets destroyed. In Python, destructors are not

needed as much needed in C++ because Python has a garbage collector that handles memory

management automatically. The _ _ del _ _ () method is a known as a destructor method in

Python. It is called when all references to the object have been deleted i.e when an object is

garbage collected.

Syntax of destructor declaration:

def __del__(self):

 # body of destructor

Note: A reference to objects is also deleted when the object goes out of reference or when
the program ends.

Example 1: Here is the simple example of destructor. By using del keyword we deleted the
all references of object ‘obj’, therefore destructor invoked automatically.

Python program to illustrate destructor

class Employee:

 # Initializing

 def __init__(self):

 print('Employee created.')

 # Deleting (Calling destructor)

 def __del__(self):

 print('Destructor called, Employee deleted.')

obj = Employee()

del obj

Output:

Employee created

www.Jntufastupdates.com 20

Destructor called, Employee deleted

Inheritance:

One of the major advantages of Object Oriented Programming is reusability.

Inheritance is one of the mechanisms to achieve the reusability. Inheritance is used to

implement is-a relationship.

Definition: A technique of creating a new class from an existing class is called inheritance. The

old or existing class is called base class or super class and a new class is called sub class or

derived class or child class.

The derived class inherits all the variable and methods of the base class and adds their

own variables and methods. In this process of inheritance base class remains unchanged.

Syntax to inherit a class:

Class MySubClass(object):

Pass(Body-of-the-derived-class)

Example :

class Pet:

def __init__(self,name,age):

self.name=name

self.age=age

class Dog(Pet):

def sound(self):
print("I am {} and My age is {} and I sounds
Like".format(self.name,self.age)) print("Bow Bow..")

class Cat(Pet):

def sound(self):
print("I am {} and My age is {} and I sounds
Like".format(self.name,self.age)) print("Meow Meow..")

class Parrot(Pet):

def sound(self):

print("Hello I am {} and My age is {} ".format(self.name,self.age))

p1=Dog("Dozer",4)

p2=Cat("Edward",3)

p3=Parrot("Jango",6)

p1.sound()

p2.sound()

p3.sound()

Example 2:

class Person:

def __init__(self,name,age):

self.name=name

self.age=age

def display(self):

print("name=",self.name)

www.Jntufastupdates.com 21

print("age=",self.age)

class Teacher(Person):

def __init__(self,name,age,exp,r_area):

Person.__init__(self,name,age)

self.exp=exp

self.r_area=r_area

def displayData(self):

Person.display(self)

print("Experience=",self.exp)

print("Research area=",self.r_area)

class Student(Person):

def __init__(self,name,age,course,marks):

Person.__init__(self,name,age)

self.course=course

self.marks=marks

def displayData(self):

Person.display(self)

print("course=",self.course)

print("marks=",self.marks)

print("********TEACHER***********")

t=Teacher("jai",55,13,"cloud computing")

t.displayData()

print("********STUDENT***********")

s=Student("hari",21,"B.Tech",99)

s.displayData()

Types of inheritance:

Python supports the following types of inheritan:

i) Single inheritance

ii) Multiple Inheritance

iii) Multi-level Inheritance

iv) Multi path Inheritance

Single Inheritance:

When a derived class inherits features form only one base class, it is called Single

inheritance.

Syntax:

class Baseclass:

<body of base class>

class Derivedclass(Baseclass):

<body of the derived class>

Example:

class A:

i=10

class B(A):

j=20

www.Jntufastupdates.com 22

obj=B()

print("member of class A is",obj.i)

print("member of class B is",obj.j)

Multiple Inheritance:

When derived class inherits features from more than one base class then it is called Multiple

Inheritance.

Syntax:

class Baseclass1:

<body of base class1>

class Baseclass2:

<body of base class2>

class Derivedclass(Baseclass1,Baseclass2):

<body of the derived class>

e.g.

class A:

i=10

class B:

j=20

class C(A,B):

k=30

obj=C()

print("member of class A is",obj.i)

print("member of class B is",obj.j)

print("member of class C is",obj.k)

Multi-Level Inheritance:

When derived class inherits features from other derived classes then it is called Multi-level

inheritance.

Syntax:

class Baseclass:

<body of base class>

class Derivedclass1(Baseclass):

<body of derived class 1>

class Derivedclass2(Derivedclass1):

<body of the derived class2>

e.g.

www.Jntufastupdates.com 23

class A:

i=10

class B(A):

j=20

class C(B):

k=30

obj=C()

print("member of class A is",obj.i)

print("member of class B is",obj.j)

print("member of class C is",obj.k)

Multi Path Inheritance:

Syntax:

class Baseclass:

<body of the base class>

class Derived1(Baseclass):

<body of the derived1>

class Derived2(Baseclass):

<body of the derived2>

class Derived3 (Derived1,Derived2) :

<body of derived3>

e.g.

class A:

i=10

class B(A):

j=20

class C(A):

k=30

class D(B,C):

ijk=40

obj=D()
print("member of class A is",obj.i)
print("member of class B is",obj.j)
print("member of class C is",obj.k)
print("member of class Cis",obj.ijk)

Polymorphism:

The word polymorphism means having many forms. In python we can find the same operator

or function taking multiple forms. That helps in re using a lot of code and decreases code

complexity.

www.Jntufastupdates.com 24

Polymorphism in operators

• The + operator can take two inputs and give us the result depending on what the inputs

are.

• In the below examples we can see how the integer inputs yield an integer and if one of the

input is float then the result becomes a float. Also for strings, they simply get

concatenated.

Example:

a = 23

b = 11

c = 9.5

s1 = "Hello"

s2 = "There!"

print(a + b)

print(type(a + b))

print(b + c)

print(type (b + c))

print(s1 + s2)

print(type(s1 + s2))

Polymorphism in built-in functions

We can also see that different python functions can take inputs of different types and then

process them differently. When we supply a string value to len() it counts every letter in it. But

if we give tuple or a dictionary as an input, it processes them differently.

Example:

str = 'Hi There !'

tup = ('Mon','Tue','wed','Thu','Fri')

lst = ['Jan','Feb','Mar','Apr']

dict = {'1D':'Line','2D':'Triangle','3D':'Sphere'}

print(len(str))

print(len(tup))

print(len(lst))

print(len(dict))

www.Jntufastupdates.com 25

Polymorphism in inheritance:

Method Overriding:

It is nothing but same method name in parent and child class with different functionalities. In

inheritance only we can achieve method overriding. If super and sub classes have the same

method name and if we call the overridden method then the method of corresponding class

(by using which object we are calling the method) will be executed.

e.g.

class A:

i=10

def display(self):

print("I am class A and I have data",self.i)

class B(A):

j=20

def display(self):

print("I am class B and I have data",self.j)

obj=B()

obj.display()

OUTPUT :

I am class B and I have data 20

Note: In above program the method of class B will execute. If we want to execute method of

class A by using Class B object we use super() concept.

Super():

In method overriding , If we want to access super class member by using sub class object we

use super()

e.g

class A:

i=10

def display(self):

print("I am class A and I hava data",self.i)

class B(A):

j=20

www.Jntufastupdates.com 26

def display(self):

super().display()

print("I am class B and I hava data",self.j)

obj=B()

obj.display()

OUTPUT:

I am class A and I have data 10

I am class B and I have data 20

Note: In above example both the functions (display () in class A and display () in class B)

will execute

Note: Name mangling is the encoding of function and variable names into unique names so

that linkers can separate common names in the language.

overloading operators

Operator Overloading means giving extended meaning beyond their predefined

operational meaning. For example, operator + is used to add two integers as well as join two

strings and merge two lists. It is achievable because ‘+’ operator is overloaded by int class and

str class. You might have noticed that the same built-in operator or function shows different

behavior for objects of different classes, this is called Operator Overloading.

Python program to show use of + and * operator for different purposes.

print(1 + 2)

concatenate two strings

print("Learn"+"For")

Product two numbers

print(3 * 4)

Repeat the String

print("Learn"*4)

Output:

3

LearnFor

12

LearnLearnLearnLearn

www.Jntufastupdates.com 27

Example 2:

Changing the behavior of operator is as simple as changing the behavior of method or

function. You define methods in your class and operators work according to that behavior defined

in methods. When we use + operator, the magic method __add__ is automatically invoked in

which the operation for + operator is defined.

class A:

 def __init__(self, a):

 self.a = a

def __add__(self, o): # adding two objects

 return self.a + o.a

ob1 = A(1)

ob2 = A(2)

ob3 = A("sai")

ob4 = A("kumar")

ob5=A([2,5,6,2])

ob6=A([34.6,12])

print(ob1 + ob2)

print(ob3 + ob4)

print(ob5 + ob6)

OUTPUT:

>>>

3

saikumar

[2, 5, 6, 2, 34.6, 12]

Case Study An ATM:

class ATM:

 def __init__(self):

 self.balance=0

 print("new account created")

 def deposit(self):

 amount=int(input("enter amount to deposit"))

 self.balance=self.balance+amount

Ob1.a=1

Ob2.a=2

Ob3.a=”sai”

Ob4.a=”kumar”

Ob5.a=[2,5,6,2]

Ob6.a=[34.6,12]

www.Jntufastupdates.com 28

 print("new balance is:",self.balance)

 def withdraw(self):

 amount=int(input("enter amount to withdraw"))

 if self.balance<amount:

 print("Insufficient Balance")

 else:

 self.balance=self.balance-amount

 print("new balance is:",self.balance)

 def enquiry(self):

 print("Balance is:",self.balance)

a=ATM()

a.deposit()

a.withdraw()

a.enquiry()

OUTPUT:

>>>

new account created

enter amount to deposit15000

new balance is: 15000

enter amount to withdraw5648

new balance is: 9352

Balance is: 9352

Adding and retrieving dynamic attributes of classes:

Dynamic attributes in Python are terminologies for attributes that are defined at runtime, after

creating the objects or instances.

Example:

class EMP:

 employee = True

e1 = EMP()

e2 = EMP()

e1.employee = False

e2.name = "SAI KUMAR" #DYNAMIC ATTRIBUTE

print(e1.employee)

www.Jntufastupdates.com 29

print(e2.employee)

print(e2.name)

print(e1.name) # this will raise an error as name is a dynamic attribute created only for

#the e2 object

www.Jntufastupdates.com 30

	Python R20 - Unit-4 PART 1
	UNIT 4 PART 2

